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Abstract 15 

Key features of the actinobacterial genus Streptomyces are multicellular, filamentous growth and 16 
production of a broad portfolio of bioactive molecules. These characteristics appear to play an important 17 
role in phage-host interactions and are modulated by phages during infection. To accelerate research of 18 
such interactions and the investigation of novel immune systems in multicellular bacteria, phage 19 
isolation, sequencing, and characterization are needed. This is a prerequisite for establishing systematic 20 
collections that appropriately cover phage diversity for comparative analyses. As part of a public 21 
outreach programme within the priority programme SPP 2330, involving local schools, we describe the 22 
isolation and characterization of five novel Streptomyces siphoviruses infecting S. griseus, 23 
S. venezuelae, and S. olivaceus. All isolates are virulent members of two existing genera and, 24 
additionally, establish a new genus in the Stanwilliamsviridae family. In addition to an extensive set of 25 
tRNAs and proteins involved in phage replication, about 80% of phage genes encode hypothetical 26 
proteins, underlining the yet underexplored phage diversity and genomic dark matter still found in 27 
bacteriophages infecting actinobacteria. Taken together, phages Ankus, Byblos, DekoNeimoidia, 28 
Mandalore, and Naboo expand the phage diversity and contribute to ongoing research in the field of 29 
Streptomyces phage-host interactions. 30 
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1. Introduction 40 

Streptomyces, belonging to the phylum of Actinobacteria, are of significant interest due to their 41 
developmental life cycle as well as their sophisticated specialized metabolism (Barka et al., 2016; 42 
Chater, 2016; Shepherdson et al., 2023). Unlike most bacteria dividing by binary fission, Streptomyces 43 
are characterized by a multicellular development starting with the germination of spores, forming a 44 
network of vegetative hyphae. Stressful conditions initiate the transition to a reproductive aerial 45 
mycelium, further differentiating into spore chains (Bush et al., 2015; Flärdh and Buttner, 2009).  46 

Production of bioactive compounds is closely linked to the developmental program and is usually 47 
initiated upon the developmental switch to the growth of aerial hyphae (Rigali et al., 2008; Yagüe et al., 48 
2012). On average, Streptomyces species encode 31 distinct specialized metabolites relevant to 49 
medicine, biotechnology, and agriculture (Alam et al., 2022; Nikolaidis et al., 2023; Otani et al., 2022). 50 
However, many biosynthetic gene clusters (BGCs) responsible for the synthesis of such bioactive 51 
compounds are silent under laboratory conditions, limiting the full appreciation of the chemical potential 52 
of Streptomyces. Developing ways to activate these BGCs has gained significant interest in recent years, 53 
which might allow access to new antimicrobial compounds (Karimian et al., 2024; Liu et al., 2021).  54 

Besides genetic engineering approaches, microbial interactions have the potential to be a potent strategy 55 
for stimulating BGCs (Netzker et al., 2018). Surprisingly, phages, as the most abundant bacterial 56 
predator, have not yet been considered as a potential trigger of secondary metabolism. However, recent 57 
studies show the antiphage properties of Streptomyces-derived aminoglycosides and anthracyclines 58 
(Jiang et al., 2020; Kever et al., 2022; Kronheim et al., 2018), as well as initial phenomenological and 59 
transcriptional clues indicating that phage infection actually triggers the production of specialized 60 
metabolites (Hardy et al., 2020; Kronheim et al., 2023; Luthe et al., 2023). 61 

Although phages infecting Streptomyces are still underexplored, efforts to isolate and characterize such 62 
actinobacteriophages have accelerated significantly, mainly initiated by the Science Education Alliance-63 
Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program in the US 64 
(Hatfull, 2015). While the resulting Actinobacteriophage Database (phagesdb.org, February 2024) 65 
currently holds information about 4850 sequenced bacteriophages infecting 13 different Actinobacteria 66 
genera, there is considerable bias towards those infecting Mycobacterium species (Hatfull, 2020). 67 
Following the success of this science program, we here report the characterization and genome analysis 68 
of five novel Streptomyces phages isolated as part of the high school outreach program “Going Viral”. 69 
This program was organized in the frame of the priority program SPP 2330 (www.spp2330.de) together 70 
with JuLab at the Forschungszentrum Jülich. 71 

 72 

2. Material and methods  73 

2.1 Bacterial strains and growth conditions 74 

For liquid cultures, all Streptomyces strains were inoculated from spore stocks and grown in GYM 75 
medium (per litre: 4 g glucose, 4 g yeast extract, 10 g malt extract, pH = 7.3). Unless mentioned 76 
otherwise, cultivations were performed overnight at 30 °C and 170 rpm. Growth on plates was 77 
performed using GYM agar (adding 1.5 % agar-agar and 20 mM CaCO3). For infections, GYM soft 78 
agar (0.4 % agar-agar) was mixed with the host strain and used as top agar in double agar overlays. 79 

2.2 Phage isolation and propagation 80 

For phage isolation, S. griseus DSM 40236, S. venezuelae NRRL B-65442, and S. olivacues DSM 41536 81 
were used as host strains. The bacteriophages were isolated by adding SM buffer (50 mM Tris-HCl, 82 
100 mM NaCl, 8 mM MgSO4, pH = 7.5) to soil samples collected within a radius of 20 km around the 83 
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Forschungszentrum Jülich. After incubation for three hours on a rock shaker, the samples were 84 
centrifuged at 4,000 x g for 20 minutes to remove solid particles. The supernatants were filtered through 85 
0.2 µm pore size membrane filters (Sarstedt; Filtropur S, PES). For phage enrichment, filtered 86 
supernatant solution was added to 5x concentrated GYM medium with 500 µl of a Streptomyces 87 
overnight culture, resulting in a 1x GYM concentration. This enrichment culture was incubated at 30 °C 88 
and 170 rpm overnight. Afterwards, the culture was centrifuged at 4,000 x g for 20 min to collect the 89 
supernatant, which was subsequently filtered with 0.2 µm filters. Serial dilutions of the enriched 90 
supernatant were made in SM buffer and spotted on double agar overlay plates containing the host 91 
bacterium in the top agar (OD450 = 0.4). Plaques were visible after overnight incubation. Phage samples 92 
were purified by restreaking single plaques at least three times. Plaque morphology had to stay constant 93 
before a sample was considered a single phage isolate (Kauffman and Polz, 2018). Harvesting of purified 94 
phage particles was performed after overnight incubation. The top agar was solubilized by adding 5 mL 95 
SM buffer and two hours incubation at RT on a rock shaker. The solution was subsequently transferred 96 
into a falcon tube and centrifuged at 4,000 g for 20 min to remove the residual amounts of top agar. The 97 
supernatant was filtered through 0.2 µm filters and stored at 4 °C. A dilution series was spotted on 98 
overlay agar for titer determination, and the visible plaques at the highest dilution were counted. 99 

2.3 Negative staining transmission electron microscopy (TEM) of phage virions 100 

For electron microscopy of single phage particles, 3.5 µL purified phage suspension was absorbed on a 101 
glow discharged (15 mA, 30 s) carbon-formvar coated copper grid (CF300-CU, Carbon film 300 mesh 102 
copper) and were subsequently washed twice in water, directly stained for 30 sec in 6 µL of 2 % (wt/vol) 103 
uranyl acetate and left for drying. The negative-stained samples were examined on a Talos L120C G2 104 
transmission electron microscope (Thermo Fisher Scientific, Dreieich, Germany), which was operated 105 
at 120 kV (LaB6 / Denka).  106 

2.4 Host range determination 107 

For host range determination and efficiency of plating testing, phages were amplified on their respective 108 
isolation host and serially diluted in SM buffer. Then, 2 µL of each dilution were spotted on bacterial 109 
lawns prepared as overlays from soft agar containing either S. griseus DSM 40236, S. venezuelae NRRL 110 
B-65442, S. olivacues DSM 41536, S. albidoflavus M145 (formerly S. coelicolor M145), 111 
S. xanthochromogenes DSM 40111, or Streptoalloteichus tenebrarius DSM 40477. Spotting was 112 
performed in duplicates. A species was considered part of the host spectrum of the phage if single 113 
plaques were visible. The efficiency of plating was calculated relative to the isolation host.    114 

2.6 DNA isolation 115 

Phage DNA was isolated by treating 2 mL of phage solution with 1 U/μL DNase I (Invitrogen, Carlsbad, 116 
CA, USA) to remove free DNA. The further steps of DNA isolation were performed with the Norgen 117 
Biotek Phage DNA Isolation Kit (Norgen Biotek, Thorold, Canada) according to the manufacturers 118 
protocol. 119 

2.7 DNA sequencing and genome assembly 120 

For genome sequencing, sample quality control, library preparation and sequencing were performed by 121 
GENEWIZ, Leipzig, using the Illumina MiSeq platform with a read length of 2 x 150 bp (Illumina). A 122 
subset of 100,000 reads was sampled for each phage, and a de novo assembly was performed with CLC 123 
genomics workbench 20.0.4 (QIAGEN, Hilden, Germany). Finally, contigs were manually curated and 124 
checked for coverage. 125 

 126 
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2.8 Gene prediction and functional annotation 127 

The phage open reading frames (ORFs) were predicted with Pharokka v 1.3.2 (Bouras et al., 2023) in 128 
terminase reorientation mode using PHANOTATE (McNair et al., 2019), tRNAs were predicted with 129 
tRNAscan-SE 2.0 (Chan et al., 2021), tmRNAs were predicted with Aragorn (Laslett, 2004), and 130 
CRISPRs were checked with CRT (Bland et al., 2007). Functional annotation was generated by 131 
matching each CDS to the PHROGs (Terzian et al., 2021), VFDB (Chen, 2004) and CARD(Alcock et 132 
al., 2019) databases using MMseqs2 (Steinegger and Söding, 2017) PyHMMER (Larralde and Zeller, 133 
2023). Contigs were matched to their closest hit in the INPHARED database (Cook et al., 2021) using 134 
mash (Ondov et al., 2016). Plots were created with the pyCirclizen package. Genome termini classes 135 
were determined using Phage Term (Garneau et al., 2017), and parameters were set by default. Phage 136 
lifestyle was predicted by the machine learning based program PhageAI (Tynecki et al., 2020) using 137 
default parameters and further confirmed by the absence of integrase genes inside the genomes. 138 

The annotated genomes were deposited in GenBank under the following accession numbers: PP171438 139 
(Ankus), PP171439 (Byblos), PP171440 (DekoNeimoidia), PP171441 (Mandalore), PP171442 140 
(Naboo).  141 

2.9 Genome comparison and classification 142 

The novel phage isolates were classified based on nucleotide sequence comparison against known 143 
Streptomyces phages (Hardy et al., 2020). Closely related bacteriophages were recovered from the NCBI 144 
nucleotide blast searches. The average nucleotide identities (ANI) were calculated by pairwise 145 
comparison of our five novel phages to the reference genomes using VIRIDIC (Moraru et al., 2020) 146 
with default settings (70 % Genus threshold and 95 % ANI as species threshold). Phylogenetic analysis 147 
was performed in MEGA X (Kumar et al., 2018). Alignment was done with MUSCLE on default 148 
parameters (Edgar, 2004). The tree was drawn using the WAG+G+F algorithm (Whelan and Goldman, 149 
2001) as a best fit model with 100 bootstrap replicates. The final visualization of the tree was done with 150 
iTOL (Letunic and Bork, 2021). 151 

 152 

3.  Results 153 

3.1 Phage isolation, morphology and host range 154 

Five novel bacteriophages infecting Streptomyces species were isolated from environmental soil 155 
samples collected in a 20 km radius around the Forschungszentrum Jülich (Germany) by high school 156 
students as part of the citizen science project “Going Viral” in the frame of the DFG-funded priority 157 
programme SPP 2330 (“New concepts in prokaryotic virus-host interaction”, www.spp2330.de). Phages 158 
Ankus, Byblos, and DekoNeimoidia were isolated on Streptomyces griseus, phage Mandalore was 159 
obtained with Streptomyces venezuelae, and Naboo was isolated on Streptomyces olivaceus (Figure 1A). 160 
All phages form clear plaques (Figure 1B). The size of 15 randomly measured plaques per phage vary 161 
drastically between the phages, even on the same host. After 42 h of incubation, plaques of Ankus and 162 
DekoNeimoidia on S. griseus are comparable in size, being 1.21 mm² (±0.57 mm²) and 1.15 mm² 163 
(±0.34 mm²), respectively. Byblos forms very large, typically round plaques averaging at 6.48 mm² 164 
(±2.24 mm²). In contrast, plaques formed by Mandalore after 42 h incubation on S. venezuelae are the 165 
smallest, with an average size of 0.07 mm² (±0.03 mm²). The plaques of Naboo on S. olivaceus have an 166 
average size of 0.83 mm² (±0.32 mm²). TEM analysis of purified phage particles showed that all phages 167 
have a typical siphoviral morphology with icosahedral capsids of sizes ranging from 66-81 nm 168 
(Supplementary Table S1) and non-contractile tails between 343-359 nm (Figure 1C). 169 

 170 
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 171 

Figure 1: Phage and plaque morphology of novel Streptomyces phages. (A) Plaque morphologies of the five 172 
different phages on double agar overlays. The double agar overlays for phages Ankus, Byblos and DekoNeimoidia 173 
were performed with Streptomyces griseus; for Mandalore, Streptomyces venezuelae was used, and Naboo was 174 
plated on Streptomyces olivaceus. Images were taken after 42 h of incubation at 30 °C. (B) Stereo microscope 175 
images of single representative plaques for each phage were taken after 42 h. Scale bar: 500 µm. (C) Transmission 176 
electron microscopy (TEM) images of virion particles. The phage isolates were negative stained with uranyl 177 
acetate. Scale Bar: 100 nm. 178 

While phages are known to be very host-specific and, therefore, often have a narrow host range, some 179 
exceptional phages are polyvalent and can infect many strains of the same species. We assessed the host 180 
range of our five phages by spotting them on bacterial lawns of five Streptomyces species, including the 181 
three isolation hosts and one additional Streptoalloteichus species (Table 1). Of the isolated phages, 182 
Mandalore solely infected its isolation host, S. venezuelae. Interestingly, phages isolated on S. griseus 183 
were able to infect S. olivaceus and vice versa. However, Naboo, isolated on S. olivacues, showed a 184 
higher EOP on S. griseus, whereas Ankus, Byblos, and DekoNeimoidia were strongly impaired on their 185 
second host. Notably, Ankus, DekoNeimoidia, and Naboo spotting of undiluted phage suspension 186 
resulted in a visible morphological change of the S. albidoflavus (previously S. coelicolor) bacterial 187 
lawn but no clear lysis after 42 h. Compared to the other phages and dilutions spotted, here red coloration 188 
of the lawn was enhanced. Overall, the host range of the isolated phages appeared to be rather narrow. 189 

Table 1: Host range determination. The host range of the five phages was determined by spotting serial dilutions 190 
of the phages on lawns of different Streptomyces species. EOP was calculated for single plaques in comparison to 191 
the isolation host highlighted in blue. (*) indicates no lysis but a morphological reaction of the lawn to the undiluted 192 
spot. 193 

 Ankus Byblos DekoNeimoidia Mandalore Naboo 

S. griseus 

DSM 40236 

1 1 1 - 33.6 

S. venezuelae 

NRRL B-65442 

- - - 1 - 

S. olivaceus 

DSM 41536 

0.00008 0.00001 0.00006 - 1 

S. albidoflavus 

M145 

(*) - (*) - (*) 
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S. xanthochromogenes 

DSM 40111 

- - - - - 

Streptoalloteichus tenebrarius 

DSM 40477 

- - - - - 

 194 

3.2 Genome sequencing and features  195 

The phage isolates were sequenced using Illumina Mi-seq short-read technology. Genomic features of 196 
the five isolated phages are summarized in Table 2. Briefly, they have genome sizes ranging from 120 197 
to 127 kb, the GC content varies in the range of 46 to 52%, and each phage genome was predicted to 198 
contain 233-252 ORFs. All phages are predicted to be virulent and encode an extensive amount of 199 
tRNAs ranging from 32 to 44 genes, spanning each all of the 20 essential amino acids except for 200 
Mandalore, which lacks a tRNA for cysteine. Except for Byblos, most of these tRNA genes are located 201 
in the first third of the genomes. Additionally, all phages have a set of genes relevant to DNA 202 
metabolism, encoding their own DnaB-like replicative helicase, single-strand DNA binding protein, a 203 
DNA primase, and DNA polymerase. For Ankus, Byblos, and DekoNeimoidia infecting S. griseus, a 204 
gene coding for a DNA polymerase exonuclease subunit was found as well. Interestingly, Mandalore 205 
and Naboo harbour a gene coding for an FtsK-like protein, and Ankus, Byblos, DekoNeimoidia, and 206 
Naboo additionally encode WhiB-like and Lsr2-like transcriptional regulators, which are widespread in 207 
actinophages (Sharma et al., 2021). All genomes contain almost 80% of hypothetical proteins, 208 
emphasizing the large amount of ‘dark matter’ in actinobacteriophage genomes. 209 

The phage genomes show a phage typical modular clustering of functional genetic units, fulfilling 210 
similar functions during host takeover and production of phage progeny (Supplementary Figure S1). To 211 
compare the five phages on protein coding level simmilarity of the predicted coding sequences, gene 212 
products were compared (Figure 2). The phages Ankus, Byblos and DekoNeimoidia show a high 213 
conservation on protein level, but especially Byblos features drastic genome rearrangements, swapping 214 
the starting and ending halves of its genome compared to Ankus and DekoNeimoidia. Notably, most of 215 
the structural proteins (green) share a high level of similarity between all five phages. Mandalore and 216 
Naboo appear to share further genes featuring significant similarity throughout their genomes. 217 

Table 2: Basic genomic features of the five novel phages. a) Open reading frames (ORFs) were predicted with 218 
Pharokka v 1.3.2 (Bouras et al., 2023), described in more detail in the material and methods section. b) Genome 219 
termini classes were determined using PhageTerm (Garneau et al., 2017). c) Phage lifestyle was predicted by the 220 
machine-learning-based program PhageAI (Tynecki et al., 2020). The absence of intergrase genes further 221 
confirmed the lytic lifestyle. 222 

 223 

Phage 

Name 

Accession 

Number 

Reference 

Host 

Genome 

Size 

(bp) 

GC 

Content 

(%) 

ORF 

Number 
a) 

Genome 

Termini 

Class b) 

Lifestyle 

Predictionc) 

Ankus PP171438 S. griseus 121,275 52 236 
DTR 

(long) 
virulent 

Byblos PP171439 S. griseus 127,548 52 249 
DTR 

(long) 
virulent 

DekoNeimoidia PP171440 S. griseus 127,012 52 239 
DTR 

(long) 
virulent 

Mandalore PP171441 S. venezuelae 120,241 46 252 
DTR 

(long) 
virulent 

Naboo PP171442 S. olivaceus 120,050 48 233 N.A.   virulent 
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 224 

Figure 2: Genome comparison on CDS level. The coding sequences (CDS) of our isolated phages were 225 
compared using the clinker pipeline (Gilchrist and Chooi, 2020) to cluster them in groups by similarity (each 226 
colour represents one group). The percent identity is indicated in shades of grey. The genomes are represented 227 
linear, and the direction of the arrows is in line with the transcription direction of each CDS. 228 

 229 

3.3 Average nucleotide identity (ANI), phylogenetic analysis and taxonomy 230 

The diversity within our isolates is further investigated by a clustering performed against 11 231 
representative phages infecting Streptomyces species, which were obtained from NCBI, based on their 232 
genetic relatedness to our five isolates. According to our ANI analysis (Figure 3A), all five isolated 233 
phages belong to the family of Stanwilliamsviridae within the Caudoviricetes class. Herein, Mandalore 234 
and Naboo fall into the subfamily of Boydwoodruffvirinae, as they are closest related to phage Coruscant 235 
(73%, NC_070782) and Tomas (94.1%, NC_070781), respectively, forming the Coruscantvirus and 236 
Tomasvirus genera. Ankus, Byblos, and DekoNeimoidia are closely related, with Ankus sharing an 237 
average nucleotide identity of 66.8% with phage Circinus (MK620896). According to the criteria of the 238 
ICTV’s Bacterial and Archaeal Viruses Subcommittee for a genus to have at least 70% nucleotide 239 
identity between its members (Turner et al., 2021), these three phages thereby potentially create a new 240 
genus within the Loccivirinae subfamily of Stanwilliamsviridae. However, while manual BLAST 241 
comparison supports the low level of similarity between Ankus and its closest found relatives, Circinus 242 
and BillNye in the Wilnyevirus genus (85% identity over 71% query coverage), web-based OrthoANIu 243 
algorithm (Yoon et al., 2017) resulted in 81% similarity. Using the helicase protein encoded by all of 244 
the 16 phages used here, we additionally performed a phylogenetic analysis (Figure 3B). The maximum-245 
likelihood tree shows a clear distinction between Mandalore and Naboo as well as Ankus, Byblos, and 246 
DekoNeimoidia grouped into the two subfamilies of Stanwilliamsviridae. Additionally, it supports 247 
classification into the aforementioned genera. Furthermore, this approach strengthens the assignment of 248 
our novel phages to the known actinobacteriophage clusters as established by The Actinobacteriophage 249 
Database (phagesdb.org, Hatfull, 2020). This resulted in the association of Mandalore and Naboo with 250 
cluster BE, subcluster BE2, while Ankus, Byblos, and DekoNeimoidia belong to the BK cluster, 251 
subcluster BK2. 252 

 253 
 254 
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 255 
Figure 3: Nucleotide-identity and protein phylogeny enable classification of five novel Streptomyces phages. 256 
Genomes were acquired from NCBI based on relatedness to our phages. The novel isolated phages are labelled in 257 
red. (A) The average nucleotide identity (ANI) analysis was performed using VIRIDICT (Moraru et al., 2020). 258 
(B) Phylogenetic analysis of the phage-encoded helicase proteins. Amino acid sequences were retrieved from the 259 
NCBI and aligned using MUSCLE (Edgar, 2004). The best-fit model WAG+G+F (Whelan and Goldman, 2001) 260 
was used to draw the shown maximum-likelihood tree with 100 bootstrap replicates indicated as red dots on the 261 
branches. Additional annotation provides information on the actinobacteriophage cluster and the associated genera 262 
in the two relevant subfamilies. Visualization was done using iTol (Letunic and Bork, 2021). The tree scale 263 
represents 0.1 substitutions per site. 264 
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4. Discussion 265 

This study presents the genomes and basic characteristics of five novel bacteriophages infecting 266 
Streptomyces. Ankus, Byblos, DekoNeimoidia, Mandalore, and Naboo are all representatives of the 267 
largest actinobacteriophage group featuring siphovirus morphology (Hatfull, 2020). They are, in 268 
general, larger in size and lower in GC content than the average when compared to the known 269 
Streptomyces phage diversity (phagesdb.org). Interestingly, this pattern holds true for many 270 
Streptomyces phages in the Actinobacteriophage Database, where phage genomes larger than 271 
100,000 bp have GC contents below 53%. These phages, like our new isolates, fall into the BE and BK 272 
clusters, further supporting our classification (phagesdb.org; Hatfull, 2020). All of them exhibit an 273 
overall narrow host range based on the present analysis. Despite systematic phage host range analyses 274 
are not commonly standardized or done at all, it appears that S. venezuelae phages typically are very 275 
specific for their host as other phages like Alderaan and Coruscant (Hardy et al., 2020), which also show 276 
the same specificity infecting only one species like our newly isolated phage Mandalore. Interestingly, 277 
the observed host range of Ankus, Byblos, DekoNeimoidia and Naboo, all infecting both S. griseus and 278 
S. olivaceus, could be a more general feature.  This could hint towards a common receptor present in 279 
both cell envelopes, as phage adsorption is the first and major determinant of host range (De Jonge et 280 
al., 2019; Magill and Skvortsov, 2023).  281 

Our analyses reveal notable differences between Ankus, Byblos, DekoNeimoidia, and their closest 282 
relatives from the Wilnyevirus genus. Evaluating the average nucleotide identity and phylogeny of the 283 
helicase proteins on the basis of the criteria given by the ICTV’s subcommittee (Turner et al., 2021) 284 
with respect to the differences between already established genera (e.g. Wilnyevirus and Wakandavirus), 285 
we propose the formation of a new genus within the Loccivirinae subfamily encompassing phages 286 
Ankus, Byblos, and DekoNeimoidia. 287 

One major asset of all five phages is the presence of genes relevant for DNA metabolism (i.e. phage 288 
replication). This is a common feature of the phages in the Stanwilliamsviridae family, which harbour 289 
helicases, DNA primases, polymerases, and ssDNA binding proteins essential for forming independent 290 
replisomes, as described for different model bacteriophages like T4 or T7 (Benkovic and Spiering, 2017; 291 
Magill et al., 2018). However, these proteins have not yet been further investigated in this group of 292 
bacteriophages infecting Streptomyces. Still, they could potentially provide interesting characteristics in 293 
terms of, for example, speed, temperature sensitivity, incorporation of non-canonical nucleotides, or 294 
overall replication mechanisms known from diverse phage-encoded polymerases (Morcinek-Orłowska 295 
et al., 2022). These features could be harnessed for molecular biology and biotechnological applications. 296 

Furthermore, Ankus, Byblos, DekoNeimoidia, Mandalore, and Naboo encode FtsK-like, Lsr2-like, and 297 
WhiB-like proteins known from host regulatory networks in Streptomyces, and which are found in many 298 
other actinobacteriophages (Bush, 2018; Chen and Banfield, 2024; Hardy et al., 2020; Sharma et al., 299 
2021). Some other genomic features include a MazG-like pyrophosphatase in phage Mandalore, 300 
potentially interfering with the host abortive infection mechanism (Gross et al., 2006; Harms et al., 2018) 301 
and a Cas4 family exonuclease encoded by Naboo that could lead to host spacer acquisition and 302 
subsequently autoimmunity of the bacterial host (Hooton and Connerton, 2015). Remarkably, all phages 303 
encode a substantial number of tRNAs, ranging from 32 to 44 genes, covering all 20 essential amino 304 
acids. The exception is Mandalore, which lacks a tRNA for cysteine. The extensive repertoire of tRNA 305 
genes could be employed to enhance gene expression in hosts with varying codon usage patterns or to 306 
counteract potential defense systems based on tRNA degradation (Burman et al., 2024; Van Den Berg 307 
et al., 2023). 308 

Focusing on the interaction between phages and specialized metabolite production, we observed red 309 
colouration of the S. albidoflavus (formerly S. coelicolor) lawn surrounding undiluted spots for Ankus, 310 
DekoNeimoidia, and Naboo. Enhanced actinorhodin production in response to phage infection was also 311 
observed in previous studies (Hardy et al., 2020; Kronheim et al., 2023). However, a direct antiphage 312 
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function of actinorhodin has not been reported so far. Considering the manifold triggers leading to 313 
actinorhodin production, it is currently more likely to assume that this molecule plays an important role 314 
in global stress responses and danger signalling in Streptomyces. For molecules of the classes of 315 
anthracyclines and aminoglycoside antibiotics – also produced by Streptomyces - pronounced antiphage 316 
properties have recently been described for a broad range of dsDNA phages (Kever et al., 2022; 317 
Kronheim et al., 2018).  To further investigate the underlying pathways and determinants, phages able 318 
to infect naturally producing strains resistant to the compounds are needed (Hardy et al., 2023). 319 
Consequently, the reported phages add to the portfolio of phages available to understand the complex 320 
multicellular antiviral immunity in Streptomyces. 321 
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